That's Decartes–Euler solution
\begin{align*}
x &= u+v+w \\[5pt]
x^2 &= u^2+v^2+w^2 + 2(uv+vw+wu) \\[5pt]
x^4 &= (u^2 + v^2 + w^2)^2 + 4(u^2+v^2+w^2)(uv+vw+wu) \\
&\quad +4(u^2 v^2+v^2 w^2+w^2 u^2)+8uvw(u+v+w) \\[5pt]
0 &= x^4+px^2+qx+r \\[5pt]
0 &= (u^2+v^2+w^2)^2+(uv+vw+wu)[\color{blue}{4(u^2+v^2+w^2)+2p}] \\
& \quad +(u+v+w)(\color{red}{8uvw+q})+4(u^2 v^2+v^2 w^2+w^2 u^2) \\
& \quad +p(u^2+v^2+w^2)+r \\
\end{align*}
You have two degree of freedom on choosing the combination of $u$, $v$ and $w$.
Eliminate the terms with factor of $\, u+v+w \,$ or $\, uv+vw+wu \,$ by taking
$$
\left \{
\begin{array}{rcL}
\color{blue}{4(u^2+v^2+w^2)+2p} &=& 0 \\[8pt]
\color{red}{8uvw+q} &=& 0
\end{array}
\right. \quad \implies \quad
\left \{
\begin{array}{rcL}
u^2+v^2+w^2 &=& -\dfrac{p}{2} \\[5pt]
u^2v^2w^2 &=& \dfrac{q^2}{64}
\end{array}
\right.$$
Also from the original quartic,
$$(u^2+v^2+w^2)^2+4(u^2 v^2+v^2 w^2+w^2 u^2)+p(u^2+v^2+w^2)+r=0$$
$$u^2 v^2+v^2 w^2+w^2 u^2=\frac{p^2}{16}-\frac{r}{4}$$
Now we can form an equation with roots $u^2$, $v^2$ and $w^2$, namely
$$t^3+\frac{p}{2}t^2+\frac{p^2-4r}{16}t-\frac{q^2}{64}=0$$