You have to calculate:
$$\cos \left(\frac{\pi}{7}\right) \cdot \cos \left(\frac{2\pi}{7}\right) \cdot \cos \left(\frac{4\pi}{7}\right)=P \quad (1)$$
We will use that
$$\sin(2x)=2\sin x \cos x \quad (2)$$
Multiply both sides of the equation $(1)$ by $\sin \left(\frac{\pi}{7}\right)$:
$$\sin \left(\frac{\pi}{7}\right) \cdot\cos \left(\frac{\pi}{7}\right) \cdot \cos \left(\frac{2\pi}{7}\right) \cdot \cos \left(\frac{4\pi}{7}\right)=P\cdot \sin \left(\frac{\pi}{7}\right)$$
Now using $(2)$ for $x=\pi/7$ we get:
$$\frac{1}{2}\cdot \sin \left(\frac{2\pi}{7}\right) \cdot \cos \left(\frac{2\pi}{7}\right) \cdot \cos \left(\frac{4\pi}{7}\right)=P\cdot \sin \left(\frac{\pi}{7}\right)$$
Now using $(2)$ for $x=2\pi/7$ we get:
$$\frac{1}{4}\cdot \sin \left(\frac{4\pi}{7}\right) \cdot \cos \left(\frac{4\pi}{7}\right)=P\cdot \sin \left(\frac{\pi}{7}\right)$$
Now using $(2)$ for $x=4\pi/7$ we get:
$$\frac{1}{8}\cdot \sin \left(\frac{8\pi}{7}\right) =P\cdot \sin \left(\frac{\pi}{7}\right)$$
Now remember that
$$\sin \left(\frac{8\pi}{7}\right)=\sin \left(\pi+\frac{\pi}{7}\right)=-\sin \left(\frac{\pi}{7}\right)$$
then:
$$P=-\frac{1}{8}$$
and:
$$1+\sec A\cdot \sec B \cdot \sec C= 1-8=-7$$