1

Why does $1+2+\dots+2003=\dfrac{2004\cdot2003}2$?

Sorry if this is missing context; not really much to add...

suomynonA
  • 6,895

3 Answers3

7

$$\begin{array}{ccc} S&=&1&+&2&+&3&+&\ldots&+&2001&+&2002&+&2003\\ S&=&2003&+&2002&+&2001&+&\ldots&+&3&+&2&+&1\\ \hline 2S&=&2004&+&2004&+&2004&+&\ldots&+&2004&+&2004&+&2004 \end{array}$$

There are $2003$ columns, so $2S=2003\cdot2004$, and therefore $S=\dfrac{2003\cdot2004}2$.

Brian M. Scott
  • 616,228
3

By symmetry, the numbers are all centered around $\frac{n+1}{2}$, and there are $n$ of them.

Ben Grossmann
  • 225,327
Asinomás
  • 105,651
2

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

You can show by induction.

Zaid Alyafeai
  • 14,343