Let $S=[0,1]\times[0,1]\subset \mathbb R^2$.
Evaluate:$$\iint_s max(x,y)\,\mathbb dx\mathbb dy$$
MY TRY:$\iint_s max(x,y)\,\mathbb dx\mathbb dy=\iint_{s_1} x\,\mathbb dx \mathbb dy+\iint_{s_2} y\,\mathbb dx \mathbb dy$
where $s_1$ is the triangle obtained by joining the point $(0,0),(1,0)$ and the line $y=x$ and similarly $s_2$ is the rest half.$$\iint_{s_1} x\,\mathbb dx \mathbb dy=\int_{y=0}^{y=1}\int_{x=y}^{x=1} x\,\mathbb dx \mathbb dy=\frac 1 3$$ and similarly $$\iint_{s_2} y\,\mathbb dx \mathbb dy=\int_{y=0}^{y=1}\int_{x=0}^{x=y} y\,\mathbb dx \mathbb dy=\frac 1 3$$ So,the answer is $\frac 2 3$.
I don't know whether it is correct or not.So,please check it and if you have any better tricks/result please share. Thank you.