For future reference the DFA Method yields the following transcript. The reader may then compare the data from a combinatorial solution to the series (OGF) that was output from the main routine.
> GFNC([[0,0], [1,1], [2,2], [3,3], [0,3], [3,0]], 4,true);
[[3, 0], [0, 3], [3, 3], [2, 2], [1, 1], [0, 0]]
Q[], 0, Q[0]
Q[], 1, Q[1]
Q[], 2, Q[2]
Q[], 3, Q[3]
Q[0], 0, Q[0, 0]
Q[0], 1, Q[1]
Q[0], 2, Q[2]
Q[0], 3, Q[0, 3]
Q[0, 0], 0, Q[0, 0]
Q[0, 0], 1, Q[0, 0]
Q[0, 0], 2, Q[0, 0]
Q[0, 0], 3, Q[0, 0]
Q[0, 3], 0, Q[0, 3]
Q[0, 3], 1, Q[0, 3]
Q[0, 3], 2, Q[0, 3]
Q[0, 3], 3, Q[0, 3]
Q[1], 0, Q[0]
Q[1], 1, Q[1, 1]
Q[1], 2, Q[2]
Q[1], 3, Q[3]
Q[1, 1], 0, Q[1, 1]
Q[1, 1], 1, Q[1, 1]
Q[1, 1], 2, Q[1, 1]
Q[1, 1], 3, Q[1, 1]
Q[2], 0, Q[0]
Q[2], 1, Q[1]
Q[2], 2, Q[2, 2]
Q[2], 3, Q[3]
Q[2, 2], 0, Q[2, 2]
Q[2, 2], 1, Q[2, 2]
Q[2, 2], 2, Q[2, 2]
Q[2, 2], 3, Q[2, 2]
Q[3], 0, Q[3, 0]
Q[3], 1, Q[1]
Q[3], 2, Q[2]
Q[3], 3, Q[3, 3]
Q[3, 0], 0, Q[3, 0]
Q[3, 0], 1, Q[3, 0]
Q[3, 0], 2, Q[3, 0]
Q[3, 0], 3, Q[3, 0]
Q[3, 3], 0, Q[3, 3]
Q[3, 3], 1, Q[3, 3]
Q[3, 3], 2, Q[3, 3]
Q[3, 3], 3, Q[3, 3]
2
2 z + 3 z + 1
- --------------
2
4 z + z - 1
> series(%, z, 13);
2 3 4 5 6 7 8 9
1 + 4 z + 10 z + 26 z + 66 z + 170 z + 434 z + 1114 z + 2850 z + 7306 z
10 11 12 13
+ 18706 z + 47930 z + 122754 z + O(z )
Here is the sequence one more time:
$$1, 4, 10, 26, 66, 170, 434, 1114, 2850, 7306,\ldots$$
The surprising part is that this sequence even has an entry at the OEIS, A277236.
Remark. We do not require the full mechanics of the DFA method here as we can simply classify admissible words according to the last digit. This yields a system of four linear equations in four variables. These can then be solved and the answer is the same as from the DFA method, see below.
> solve([A0-z=z*(A1+A2), A1-z=z*(A0+A2+A3\
> ), A2-z=z*(A0+A1+A3), A3-z=z*(A1+A2)], [A0,A1,A2,A3]);
z (z + 1) z (2 z + 1) z (2 z + 1)
[[A0 = - ------------, A1 = - ------------, A2 = - ------------,
2 2 2
4 z + z - 1 4 z + z - 1 4 z + z - 1
z (z + 1)
A3 = - ------------]]
2
4 z + z - 1
> subs(op(1, %), A0+A1+A2+A3);
2 z (z + 1) 2 z (2 z + 1)
- ------------ - -------------
2 2
4 z + z - 1 4 z + z - 1
> simplify(1+%);
2
2 z + 3 z + 1
- --------------
2
4 z + z - 1
Remark, II. Simplifying even more we may establish a system of only two equations by classifying words according to whether they and in zero or three or one or two. It looks like this is what the question is asking for, and it is shown below.
> solve([A03-2*z=2*z*A12, A12-2*z=2*z*A03+z*A12], [A03, A12]);
2 z (z + 1) 2 z (2 z + 1)
[[A03 = - ------------, A12 = - -------------]]
2 2
4 z + z - 1 4 z + z - 1
> subs(op(1, %), A03+A12);
2 z (z + 1) 2 z (2 z + 1)
- ------------ - -------------
2 2
4 z + z - 1 4 z + z - 1
> simplify(1+%);
2
2 z + 3 z + 1
- --------------
2
4 z + z - 1