I want to prove that for any $a,b\in\mathbb{Z}^+$ there are relatively prime $m,n\in\mathbb{Z}$ such that $mn=\text{lcm}(a,b)$.
Since $\gcd(a,b)\text{lcm}(a,b)=ab$, if either $$\gcd\left(\frac{a}{\gcd(a,b)},b\right)=1$$ or $$\gcd\left(\frac{b}{\gcd(a,b)},a\right)=1$$ we can put $m=\frac{a}{\gcd(a,b)}$ and $n=b$. I'm stuck on showing that one of these pairs are relatively prime.