-6

Find all integer pairs $(x,y)$ that satisfy the following equation: $$ 21x+47y=1. $$

I know the solution with modular arithmetic: \begin{align} 0x + 5y &= 1 \pmod{21} \\ 5y &= -20 \pmod{21}\\ y = -4 \pmod{21} &\Longleftrightarrow y = -4 + 21c \\ 21x + 47(-4 + 21c) &= 1\\ 21x &= 189 - 21 * 47c \\ x &= 9 - 47c. \\ \end{align}

Therefore $$(x, y) = (9 - 47c, -4 + 21c)$$

Is there a way to do this without modular arithmetic? Thanks in advance!

1 Answers1

1

Hint: $\operatorname{gcd}(21,47)=1$ so there is a solution, by Bézout's identity. Suppose $(x,y)$ is such a solution. Then note \begin{align} 21x+47y=1&\iff21x+21\cdot47+47y-21\cdot47=1\\ &\iff 21(x+47)+47(y-21)=1 \end{align}

Guest
  • 4,158