Consider $X=X_r+jX_i$ to be a circularly symmetric Gaussian random variable, and $$X\sim\mathcal{N}_c(0,\sigma^2)$$ where $\mathcal{N_c}$ denotes the Gaussian distribution for complex random variable. Here $X_r$ and $X_i$ are the real and the imaginary parts of $X$. Due to circularly symmetry assumption, zero mean random variables $X_r$ and $X_i$ are independent and identically distributed (i.i.d) with each $$X_r\sim\mathcal{N_r}(0,\sigma^2/2)$$ $$X_i\sim\mathcal{N_r}(0,\sigma^2/2)$$ where $\mathcal{N_r}$ denotes the Gaussian distribution for real random variable. Now, I want to calculate Variance of $$\mathbb{Var}[\min(|X|,\eta)]$$
This Question I already asked but for Real random variable. Moments of min of a random variable and a constant.. Let $z_{\eta}\equiv(\eta-m)/\sigma$. Then \begin{align} \mathbb{E}[X\wedge \eta]=&E[X1\{X\le \eta\}]+\eta \mathbb{E}[1\{X>\eta\}] \\ =&m\Phi(z_{\eta})-\sigma\phi(z_{\eta})+\eta(1-\Phi(z_{\eta})), \end{align} \begin{align} \mathbb{E}[(X\wedge \eta)^2]=&\mathbb{E}[X^21\{X\le \eta\}]+\eta^2 \mathbb{E}[1\{X>\eta\}] \\ =&(m^2+\sigma^2)\Phi(z_{\eta})-\sigma(m+\eta)\phi(z_{\eta})+\eta^2(1-\Phi(z_{\eta})), \end{align} and $$ Var(X\wedge \eta)=\mathbb{E}[(X\wedge \eta)^2]-(\mathbb{E}[X\wedge \eta])^2. $$
I want to know what will be the changes if Random variable is complex