Let $f_1, f_2 \dots, f_r \in \mathbb C [x,y]$ and suppose $$\gcd(f_1, \dots , f_r)=1$$
Show that $V(f_1, \dots , f_r) \subset \mathbb A^2$ is finite.
Partial Solution: suppose $(x_0,y_0) \in V(p(x,y),q(x,y))$, then for $(x,y_0)$ we can use Bezout and say that exist $a(x),b(x),h(x) \in \mathbb C [x]$ such that $$ a(x)p(x,y_0) + b(x)q(x,y_0)=h(x)$$
So there are finite $x_i \in \mathbb C$ such that $(x_i,y_0)\in V(p(x,y),q(x,y))$. The same holds for $(x_0,y)$.