2

Ploblem:

For every nonempty set $A$ of a metric space $M$, define $A^*=\{x∈M: d(x,A)=0\}$. Prove that $(A^*)^* = A^*$.

Now by definition, the distance between $x$ and $A$ is $d(x,A)=\inf\{d(a,x):x∈A\}$. My question is how are the elements in $\inf\{d(a,x):x∈A\}=0$ ? how can I take an element of this set?

Asaf Karagila
  • 393,674
Jacob S.
  • 293

1 Answers1

1

Lemma: $A^*$ is closed in $M$.

Proof: We show that $(A^*)^c$ is open in $M$. We have $$ (A^*)^c=\{x\in M:d(x,A)>0\} $$ Let $x\in(A^*)^c$. Then $\gamma:=d(x,A)>0$ and $B_M(x,\gamma/2)\subset(A^*)^c$. Indeed, for all $y\in B_M(x,\gamma/2)$ and for all $a\in A$, we have \begin{align} d(y,a)&\geq d(x,a)-d(x,y)\\ &>\gamma-\frac{\gamma}{2}\\ &=\frac{\gamma}{2} \end{align} hence $d(y,A)>\gamma/2>0$.

Proof of $\subset$: Let $x\in(A^*)^*$. Then $d(x,A^*)=0$ so there exists a sequence $(a_n)\subset A^*$ converging to $x$. Since $A^*$ is closed, $\lim a_n=x\in A^*$.

Guest
  • 4,158