1

Let $G$ be a finite group prove that $o(ab)=o(ba)$

I have started with let $(ab)^n=e$ now because $G$ is a group there is $(ab)^{-1}\in G$ but can I conclude it is $b^{-1}a^{-1}$?

MJD
  • 65,394
  • 39
  • 298
  • 580
gbox
  • 12,867

2 Answers2

10

Observe that $(ba)^{n+1}=b(ab)^na$.

Hence, if $(ab)^n=e$, then $(ba)^{n+1}=ba$, and therefore $(ba)^n=e$.

Now its your turn to produce a clean proof !

Fred
  • 77,394
1

Yes you can, in any group $(ab)^{-1} = b^{-1}a^{-1}$, just because \begin{align*} (ab)^{-1} &= (ab)^{-1}aa^{-1}\\ &= (ab)^{-1}abb^{-1}a^{-1}\\ &= b^{-1}a^{-1} \end{align*}

martini
  • 84,101