2

Below is my solution for this limit. I get $0$, but the answer, is in fact, $\frac{1}{18}$. What's the mistake I'm making?

{From here: A limit problem $\lim\limits_{x \to 0}\frac{x\sin(\sin x) - \sin^{2}x}{x^{6}}$}


$$\lim_{x \to 0}\frac{x\sin(\sin x) - \sin^{2}x}{x^{6}}$$ $$=\lim_{x \to 0}\frac{x\sin(\sin x)}{x^{6}}-\lim_{x \to 0}\frac{\sin^{2}x}{x^{6}}$$ $$=\lim_{x \to 0}\frac{x\sin(\sin x)}{x^{6}}\cdot\frac{\sin x}{\sin x}\cdot\frac{x}{x}-\lim_{x \to 0}\frac{\sin^{2}x}{x^{2}}\cdot\frac{1}{x^4}$$ $$=\lim_{x \to 0}\frac{\sin(\sin x)}{\sin x}\cdot\frac{\sin x}{ x}\cdot\frac{x^2}{x^6}-\lim_{x \to 0}\frac{1}{x^4}$$ $$=\lim_{x \to 0}\frac{1}{x^4}-\lim_{x \to 0}\frac{1}{x^4} =\lim_{x \to 0}\left(\frac{1}{x^4}-\frac{1}{x^4}\right)=0$$

1 Answers1

3

$$ \sin t = t - \frac{t^3}{6} + \frac{t^5}{120} \mp ... $$ $$ \sin \sin x = \sin x -\frac{\sin^3 x}{6} + \frac{\sin^5 x}{120} \mp $$ $$ \sin \sin x = \left( x - \frac{x^3}{6} + \frac{x^5}{120} \mp ... \right) - \frac{\left( x - \frac{x^3}{6} \pm \right)^3}{6} + \frac{\left( x - \mp \right)^5}{120} \pm $$ $$ \sin \sin x = \left( x - \frac{x^3}{6} + \frac{x^5}{120} \mp ... \right) - \frac{\left( x^3 - \frac{x^5}{2} \pm \right)}{6} + \frac{ x^5 - \mp }{120} \pm $$ $$ \sin \sin x = x - \frac{x^3}{3} + \frac{x^5}{10} \mp $$ $$ x \sin \sin x = x^2 - \frac{x^4}{3} + \frac{x^6}{10} \mp $$ $$ \sin^2 x = x^2 - \frac{x^4}{3} + \frac{2 x^6}{45} \mp $$ $$ x \sin \sin x - \sin^2 x = \frac{x^6}{10} - \frac{2 x^6}{45} \pm $$ $$ x \sin \sin x - \sin^2 x = \frac{9x^6}{90} - \frac{4 x^6}{90} \pm $$ $$ x \sin \sin x - \sin^2 x = \frac{5x^6}{90} \pm $$ $$ x \sin \sin x - \sin^2 x = \frac{x^6}{18} + O( x^7) $$ Meanwhile, the function depicted is even, all exponents in the final expression must be even, so we can say the slightly stronger $$ x \sin \sin x - \sin^2 x = \frac{x^6}{18} + O( x^8) $$

Will Jagy
  • 139,541