Below is my solution for this limit. I get $0$, but the answer, is in fact, $\frac{1}{18}$. What's the mistake I'm making?
{From here: A limit problem $\lim\limits_{x \to 0}\frac{x\sin(\sin x) - \sin^{2}x}{x^{6}}$}
$$\lim_{x \to 0}\frac{x\sin(\sin x) - \sin^{2}x}{x^{6}}$$ $$=\lim_{x \to 0}\frac{x\sin(\sin x)}{x^{6}}-\lim_{x \to 0}\frac{\sin^{2}x}{x^{6}}$$ $$=\lim_{x \to 0}\frac{x\sin(\sin x)}{x^{6}}\cdot\frac{\sin x}{\sin x}\cdot\frac{x}{x}-\lim_{x \to 0}\frac{\sin^{2}x}{x^{2}}\cdot\frac{1}{x^4}$$ $$=\lim_{x \to 0}\frac{\sin(\sin x)}{\sin x}\cdot\frac{\sin x}{ x}\cdot\frac{x^2}{x^6}-\lim_{x \to 0}\frac{1}{x^4}$$ $$=\lim_{x \to 0}\frac{1}{x^4}-\lim_{x \to 0}\frac{1}{x^4} =\lim_{x \to 0}\left(\frac{1}{x^4}-\frac{1}{x^4}\right)=0$$