Evaluate
$$P.V. \int^{\infty}_{0} \frac{x^\alpha }{x(x+1)} dx $$
where $0 < \alpha <1$
Thm Let $P$ and $Q$ be polynomials of degree $m$ and $n$,respectively, where $n \geq m+2$. If $Q(x)\neq 0$. for $Q$ has a zero of order at most 1 at the origin and $f(z)= \frac{z^\alpha P(z)}{Q(z)}$, where $0 < \alpha <1$ then $$P.V, \int^{\infty}_0 \frac{x^ \alpha P(x)}{Q(x)} dx= \frac{2 \pi i}{1- e^{i \alpha 2 \pi }} \sum^{k}_{j=1} Res [f,z_j] $$ where $z_1,z_2 ,\dots , z_k$ are the nonzero poles of $\frac{P}{Q}$
Attempt
Got that $P(x)=1$ where its degree $m=1$ and $q(x)=x(x+1)$ its degree is $n=1$ so it is not the case that $n \geq m+2$ because $2 \geq 1+2$