0

Let $a_1=\sqrt2$ and let $a_n=\sqrt{2+a_{n-1}}$ for $n \ge 2$. How do I prove that this sequence converges?

ts375_zk26
  • 4,872

1 Answers1

1

Hints:

$$a_n=\sqrt{2+a_{n-1}}\le\sqrt{2+a_n}=a_{n+1}$$

$$a_n\le 2\iff \sqrt{2+a_{n-1}}\le\sqrt{2+2}=2$$

Can you see now how to prove by induction th above?

DonAntonio
  • 211,718
  • 17
  • 136
  • 287