$\frac {f(g(x))}{d(g(x))}*\frac{d(g(x))}{dx}=$
$\lim_{H_h = g(x+h)- g(x)\rightarrow 0} \frac {f(g(x) + H_h) -f(g(x)) }{H_h}*\lim_{h= x+h - x = h\rightarrow 0} \frac{g(x+h) - g(x)}h$
$= \lim_{h\rightarrow 0}\frac {f(g(x) + H_h) -f(g(x)) }{H_h}*\lim_{h\rightarrow 0} \frac{g(x+h) - g(x)}h$
$= \lim_{h\rightarrow 0}\frac {f(g(x) + g(x+h) - g(x)) -f(g(x)) }{H_h}* \frac{g(x+h) - g(x)}h$
$= \lim_{h\rightarrow 0}\frac {f(g(x+h)) -f(g(x)) }{H_h}* \frac{H_h}h$
$= \lim_{h\rightarrow 0}\frac {f(g(x+h)) -f(g(x)) }h$
$= \frac {d(f(g(x))}{dx}$
(See comments. If $H_h = g (x+h)-g(x)=0$ for all $0 < h < \delta $ for some $\delta $ then those limits don't really work.)
(But then $g'(x) = \lim\frac {g (x+h)-g (x)}h=\lim \frac 0h =0$ and $g (x)=g (x+h) $ so $\frac {d(f (g))}{dx}=\lim \frac {f (g (x+h))-f (g (x))}h=\lim\frac {f (g(x))-f (g(x))}h=\lim \frac 0h=0 = \frac {dfg (x)}{dg (x)}*0=\frac {dfg (x)}{dg (x)}*\frac {dg (x)}{dx} $ so that's trivial.)
===
This is highly abusive, but for small values of $h \ne 0 $:
$f'(x)\approx \frac {f (x+h)-f (x)}h $ so
$hf'(x)\approx f (x+h) - f (x) $
$f (x)\approx f (x+h)-hf'(x) $ and
$f (x+h)\approx f (x)+hf'(x)$
and thus all hold true even for $h=0$ (but they are rough)
And so for small values of $h $ and small values of $k=hg'(x) $
$h(f\circ g)'(x)\approx$
$f (g (x+h))-f (g (x))\approx $
$f (g (x)+hg'(x))-f (g (x))\approx $ (for small $k=hg'(x) $
$kf'(g (x))\approx $
$hg'(x)f '(g (x))$
So $(f\circ g)'(x)\approx g'(x)f' (g (x)) $.
Lots more rigor is required to make those valid limit expressions ($h $ can't equal $0$ but $g'(x) $ might, etc.) but that is intuitive.