I have to prove that the following vector has normal distribution:
$$ \left( W_t, \int_0^t W_s \, ds\right) $$
where $W_t$ is a Brownian motion. I tried just by a forward computation on the characteristic function using the Ito derivative. In order to make an easier computation let $$ \Gamma_t=exp\left( i \xi W_t + i \eta \int_0^t W_s \, ds \right) $$ and $$ Y_t = \int_0^t W_s \, ds $$ We have: $$ d \Gamma_t = i\xi \Gamma_t dW_t+i \eta\Gamma_t dY_t + \frac{1}{2}\left( -|\xi|^2\Gamma_t \, dt\, - i\eta \Gamma_t \, d\langle Y_t\rangle -2\xi \eta \Gamma_t d \langle Y_t, W_t\rangle\right) $$
Now, since we have that $$ dY_t = W_t dt $$ it follows that $$ d \langle Y_t \rangle = 0 $$
and
(this is a standard formal computation) $$ d \langle Y_t ,W_t\rangle= dY_t dW_t = W_t dt dW_t = 0 $$
Passing to the average: \begin{align} \mathbb{E} \left[ \Gamma_t \right] &=1 +i \eta \int_0^t \mathbb{E} \left[\Gamma_s dY_s \right]-\int_0^t\frac{|\xi|^2}{2} \mathbb{E} \left[ \Gamma_s \right] \, ds \\ &= 1 + i \eta \int_0^t \mathbb{E} \left[ \Gamma_s W_s \right] ds -\int_0^t\frac{|\xi|^2}{2} \mathbb{E} \left[ \Gamma_s \right] \, ds \end{align}
At this point I'm trying to get an ODE for $\mathbb{E}[\Gamma_t]$ but I'm a little bit stuck