I am trying to solve Hughston Tod's Problem 2.10)
The Transpose of a matrix $A_{ij}$ is the matrix $\tilde{A}_{ij}=A_{ji}$. A matrix is called symmetric if $A_{ij}=\tilde{A}_{ij}$, and antisymmetric if $A_{ij}=-\tilde{A}_{ij}$. A matrix is called orthogonal if $A_{ij}\tilde{A}_{jk}=\delta_{ik}$. Suppose $P_{ij}$ is antisymmetric, and that $\delta_{ij}+P_{ij}$ has an inverse $Q_{ij}$ Show that $A_{ik}=(\delta_{ij}-P_{ij})Q_{jk}$ is orthogonal.
I went about this problem in the following way:
If $$A_{ik}=(\delta_{ij}-P_{ij})Q_{jk}$$ then $$\tilde{A}_{ij}=(\delta_{ik}+P_{ik})\tilde{Q}_{kj}$$ Then multiplying $$A_{ik}\tilde{A}_{ij}=(\delta_{in}-P_{in})\underbrace{Q_{nk}(\delta_{km}+P_{km})}_{=\delta_{nm}}\tilde{Q}_{mj}=\delta_{ij}$$ The last equality can be verified by taking the Transpose of the term in the braces.
Did I do everything correct?