If $ a \equiv 3\pmod 4$ , $ b \equiv 3\pmod 4 $ Then $ab \equiv 1\pmod4$.
How can I prove that? If I multiply $a \equiv 3\pmod 4 $ with $ b \equiv 3\pmod 4$
then will it look like? $ab \equiv 9\pmod4 \rightarrow ab \equiv 1\pmod4$ ?
If $ a \equiv 3\pmod 4$ , $ b \equiv 3\pmod 4 $ Then $ab \equiv 1\pmod4$.
How can I prove that? If I multiply $a \equiv 3\pmod 4 $ with $ b \equiv 3\pmod 4$
then will it look like? $ab \equiv 9\pmod4 \rightarrow ab \equiv 1\pmod4$ ?
You know $a=4m+3,\ b=4n+3$ for some integers $m,n$ Now muptiply these, and try to factor out $4$ from as much as possible.
we define $$a=3+4m$$ and $$b=3+4n$$ with $$m,n\in\mathbb{Z}$$ then we have $$ab=1+(8+12m+12n+16mn)$$ thus we can write $$ab \equiv 1 \mod 4$$
$[a\equiv3\pmod4]\wedge[b\equiv3\pmod4]\implies$
$[\exists{m}\in\mathbb{Z}:a=4m+3]\wedge[\exists{n}\in\mathbb{Z}:b=4n+3]\implies$
$[\exists{m,n}\in\mathbb{Z}:ab=(4m+3)(4n+3)]\implies$
$[\exists{m,n}\in\mathbb{Z}:ab=16mn+12m+12n+9]\implies$
$[\exists{m,n}\in\mathbb{Z}:ab=16mn+12m+12n+8+1]\implies$
$[\exists{m,n}\in\mathbb{Z}:ab=4(4mn+3m+3n+2)+1]\implies$
$[\exists{k}\in\mathbb{Z}:ab=4k+1]\implies$
$[ab\equiv1\pmod4]$