I was given the following problem on which I'm quite stuck at the moment.
Does the property $$(A^n)^T = (A^T)^n$$ hold for an arbitrary $m \times m$-matrix with $n \in \mathbb{Z}^+$?
I didn't have any intuition if this property actually holds so I started checking with an example $2 \times 2$-matrix.
$\begin{alignat*}{5}\left(\begin{bmatrix}1&1\\2&0\end{bmatrix}^2\right)^T &\rightarrow \left(\begin{bmatrix}1&1\\2&0\end{bmatrix} \times \begin{bmatrix}1&1\\2&0\end{bmatrix}\right)^T &&\rightarrow \left(\begin{bmatrix}3&1\\2&2\end{bmatrix}\right)^T &&&\rightarrow \begin{bmatrix}3&2\\1&2\end{bmatrix} \\ \left(\begin{bmatrix}1&1\\2&0\end{bmatrix}^T\right)^2 &\rightarrow \left(\begin{bmatrix}1&2\\1&0\end{bmatrix}\right)^2 &&\rightarrow \begin{bmatrix}1&2\\1&0\end{bmatrix} \times \begin{bmatrix}1&2\\1&0\end{bmatrix} &&&\rightarrow \begin{bmatrix}3&2\\1&2\end{bmatrix}\end{alignat*}$
These results led me to believe that this statement looks true on first sight. I started writing out the proof for it using both the definition of matrix multiplication and transpose.
$\begin{alignat*}{3}\left(\left(A^n\right)^T\right)_{i_{0}i_{n}} &= \left(\left(\prod_{i=1}^{n} A\right)^T\right)_{i_{0}i_{n}} = \left(\prod_{i=1}^{n} A\right)_{i_{n}i_{0}} &&= \sum_{i_{1}}^{m}\sum_{i_{2}}^{m}\cdots\sum_{i_{n-1}}^{m} A_{i_{0}i_{1}}A_{i_{1}i_{2}}A_{i_{2}i_{3}}\cdots A_{i_{n-2}i_{n-1}}A_{i_{n-1}i_{n}} \\ & &&=\sum_{i_{1},i_{2},\cdots ,i_{n-1}}^{m} A_{i_{0}i_{1}}A_{i_{1}i_{2}}A_{i_{2}i_{3}}\cdots A_{i_{n-2}i_{n-1}}A_{i_{n-1}i_{n}} \\ \left(\left(A^T\right)^n\right)_{i_{0}i_{n}} &= \left(\prod_{i=1}^{n} A^T\right)_{i_{0}i_{n}} &&= \sum_{i_{1}}^{m}\sum_{i_{2}}^{m}\cdots\sum_{i_{n-1}}^{m} A_{i_{0}i_{1}}^{T}A_{i_{1}i_{2}}^{T}A_{i_{2}i_{3}}^{T}\cdots A_{i_{n-2}i_{n-1}}^{T}A_{i_{n-1}i_{n}}^{T} \\ & &&= \sum_{i_{1}}^{m}\sum_{i_{2}}^{m}\cdots\sum_{i_{n-1}}^{m} A_{i_{1}i_{0}}A_{i_{2}i_{1}}A_{i_{3}i_{2}}\cdots A_{i_{n-1}i_{n-2}}A_{i_{n}i_{n-1}} \\ & &&=\sum_{i_{1},i_{2},\cdots ,i_{n-1}}^{m} A_{i_{1}i_{0}}A_{i_{2}i_{1}}A_{i_{3}i_{2}}\cdots A_{i_{n-1}i_{n-2}}A_{i_{n}i_{n-1}}\end{alignat*}$
However, this is where I'm stuck. Can one simply state that since all sums sum over the same range and the matrices don't differ, these two statements are equivalent?