I need to find the limit of the following sequence: $$\lim\limits_{n \to\infty}\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)$$
-
Also duplicate of https://math.stackexchange.com/questions/183061/how-to-evaluate-lim-limits-n-to-infty-prod-limits-k-1n-1k-n2?noredirect=1&lq=1. – StubbornAtom Jul 04 '19 at 14:52
4 Answers
PRIMER:
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{\frac{x-1}{x}\le \log(x)\le x-1} \tag 1$$
for $x>0$.
Note that we have
$$\begin{align} \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)&=\sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)\tag 2 \end{align}$$
Applying the right-hand side inequality in $(1)$ to $(2)$ reveals
$$\begin{align} \sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)&\le \sum_{k=1}^n \frac{k}{n^2}\\\\ &=\frac{n(n+1)}{2n^2} \\\\ &=\frac12 +\frac{1}{2n}\tag 3 \end{align}$$
Applying the left-hand side inequality in $(1)$ to $(2)$ reveals
$$\begin{align} \sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)&\ge \sum_{k=1}^n \frac{k}{k+n^2}\\\\ &\ge \sum_{k=1}^n \frac{k}{n+n^2}\\\\ &=\frac{n(n+1)}{2(n^2+n)} \\\\ &=\frac12 \tag 4 \end{align}$$
Putting $(2)-(4)$ together yields
$$\frac12 \le \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)\le \frac12+\frac{1}{2n} \tag 5$$
whereby application of the squeeze theorem to $(5)$ gives
$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty} \log\left(\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)\right)=\frac12}$$
Hence, we find that
$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty}\prod_{k=1}^n \left(1+\frac{k}{n^2}\right)=\sqrt e}$$
And we are done!

- 179,405
-
That solution would be perfect for me if I knew anything about that 'O' symbol. My lecturer has not defined it yet, so there comes my question: is there any slightly less difficult solution? However, thank you for that one. – R.K. Dec 10 '16 at 16:33
-
-
-
@R.K. I've edited the development given your feedback. The development relies on basic tools only now. – Mark Viola Dec 10 '16 at 17:30
-
-
-
Actually, after rethinking, I have one question according to the step number 4. Why is k/(k+n^2) greater than k/(1+n^2)? The denominator of the second fraction is smaller than the first one's, so shouldn't it be <? – R.K. Dec 10 '16 at 18:04
-
-
-
1@marcocantarini Marco, thanks. And once in a while, I'll bring heavIer weaponry – Mark Viola Dec 10 '16 at 22:37
Note that $$\prod_{k\leq n}\left(1+\frac{k}{n^{2}}\right)=\prod_{k\leq n}\left(\frac{n^{2}+k}{n^{2}}\right)=\frac{\left(n^{2}+1\right)_{n}}{n^{2n}} $$ where $\left(x\right)_{m} $ is the Pochhammer symbol and since $$\left(x\right)_{m}=\frac{\Gamma\left(x+m\right)}{\Gamma\left(x\right)} $$ we have $$\prod_{k\leq n}\left(1+\frac{k}{n^{2}}\right)=\frac{\Gamma\left(n^{2}+n+1\right)}{n^{2n}\Gamma\left(n^{2}+1\right)}\longrightarrow\color{red}{\sqrt{e}} $$ where the last limit can be calculated using the Stirling's approximation.

- 33,062
- 2
- 47
- 93
-
4
-
@Dr.MV Well, in a battle of the fittest, the gun usually wins... unless you are some amazing hero that saves us all :D – Simply Beautiful Art Dec 10 '16 at 19:51
Hint
$$P_n=\prod_{k=1}^n (1+\frac{k}{n^2})\implies \log(P_n)=\sum_{k=1}^n \log\left(1+\frac{k}{n^2}\right)$$ Work with the sum (without forgetting by the end that $P_n=e^{\log(P_n)}$)

- 260,315
$$\left(1+\frac{k}{n^2} \right)\left(1+\frac{n-k}{n^2} \right)=\left(1+\frac{1}{n} +\frac{k(n-k)}{n^4} \right)$$
Then we have $$\left(1+\frac{1}{n} \right) \leq \left(1+\frac{1}{n} +\frac{k(n-k)}{n^4} \right) \leq \left(1+\frac{1}{n} +\frac{1}{n^2} \right)=\left(1 +\frac{n+1}{n^2} \right)$$
Therefore $$\left(1+\frac{1}{n} \right) ^\frac{n}{2} \leq \prod_{k=1}^n\left(1+\frac{k}{n^2}\right) \leq \left(1 +\frac{n+1}{n^2} \right)^\frac{n}{2}$$
and squeeze it.

- 132,525