Below is the derivation of the following equality:
$$\zeta(-s)=\frac1{1-2^{1+s}}\lim_{r\to1^-}\left(\underbrace{r\cdot\frac d{dr}r\cdot\frac d{dr}\dots r\cdot\frac d{dr}}_s\frac{-1}{1+r}\right)$$
Notice that if we have
$$\zeta(s)=1+\frac1{2^s}+\frac1{3^s}+\frac1{4^s}+\dots$$
$$\eta(s)=1-\frac1{2^s}+\frac1{3^s}-\frac1{4^s}+\dots$$
then, when they are absolutely convergent, we get the functional equation:
$$\begin{align}\zeta(s)&=1+\frac1{2^s}+\frac1{3^s}+\frac1{4^s}+\dots\\\eta(s)&=1-\frac1{2^s}+\frac1{3^s}-\frac1{4^s}+\dots\\\hline\zeta(s)-\eta(s)&=2\left(\ \ \frac1{2^s}\qquad\ \ +\frac1{4^s}+\dots\right)\\&=2^{1-s}\left(1+\frac1{2^s}+\frac1{3^s}+\frac1{4^s}+\dots\right)\tag{factored out $2^s$}\\&=2^{1-s}\zeta(s)\end{align}$$
Solving for $\zeta(s)$, we get
$$\zeta(s)=\frac1{1-2^{1-s}}\eta(s)$$
And since these are analytic functions, this holds for all $s$.
As a somewhat elementary method, we can evaluate the $\eta(s)$ as follows, which converges for all $s$.
$$\eta(s)=\lim_{r\to1^-}\sum_{n=1}^\infty\frac{(-1)^{n+1}r^n}{n^s}$$
And thus, we have ourselves left with
$$\eta(-3)=\lim_{r\to1^-}\sum_{n=1}^\infty(-1)^{n+1}r^nn^3=-\frac18$$
which may be done by manipulating the geometric series:
$$\frac{-1}{1+r}=\sum_{n=0}^\infty(-1)^{n+1}r^n$$
$$r\cdot\frac d{dr}\frac{-1}{1+r}=\sum_{n=0}^\infty(-1)^{n+1}nr^n\\\vdots$$
$$\underbrace{r\cdot\frac d{dr}r\cdot\frac d{dr}\dots r\cdot\frac d{dr}}_k\frac{-1}{1+r}=\sum_{n=0}^\infty(-1)^{n+1}n^kr^n$$
Which then yields the desired result $\zeta(-3)=\frac1{120}$.
So, succinctly, we end up with the following form for the zeta function whenever $s\in\mathbb N,\ s>0$:
$$\zeta(-s)=\frac1{1-2^{1+s}}\lim_{r\to1^-}\left(\underbrace{r\cdot\frac d{dr}r\cdot\frac d{dr}\dots r\cdot\frac d{dr}}_s\frac{-1}{1+r}\right)$$
which isn't terribly difficult to work out. Just a lot of quotient rule going on in there. If $s=0$, we have
$$\zeta(0)=\frac1{1-2^{1+0}}\lim_{r\to1^-}\left(\frac1{1+r}\right)=-\frac12$$
Some values worked out for you:
$$\zeta(-1)=\frac1{1-2^{1+1}}\lim_{r\to1^-}\left(r\cdot\frac d{dr}\frac{-1}{1+r}\right)=-\frac13\lim_{r\to1^-}\left(\frac{r}{(1+r)^2}\right)=-\frac1{12}$$
$$\zeta(-2)=\frac1{1-2^{1+2}}\lim_{r\to1^-}\left(r\cdot\frac d{dr}r\cdot\frac d{dr}\frac{-1}{1+r}\right)=-\frac17\lim_{r\to1^-}\left(r\cdot\frac d{dr}\frac{r}{(1+r)^2}\right)\\=-\frac17\lim_{r\to1^-}\left(\frac{r-r^2}{(1+r)^3}\right)=0$$
$$\zeta(-3)=\frac1{1-2^{1+3}}\lim_{r\to1^-}\left(r\cdot\frac d{dr}r\cdot\frac d{dr}r\cdot\frac d{dr}\frac{-1}{1+r}\right)=-\frac1{15}\lim_{r\to1^-}\left(r\cdot\frac d{dr}\frac{r-r^2}{(1+r)^3}\right)\\=-\frac1{15}\left(\frac{r-4r^2+r^3}{(1+r)^4}\right)=\frac1{120}$$