If we have $\left(e^{i\pi/2}\right)^2=e^{\pi i}=-1$, then we know that $e^{i\pi/2}=\pm i$.
There is no algebraic way to determine whether $e^{i\pi/2}$ is $i$ or $-i$ since we are only using $\left(e^{i\pi/2}\right)^2=-1$ to define $e^{i\pi/2}$. The culprit here is the automorphism of $\mathbb{C}$ that swaps $i$ and $-i$ (see this answer).
To make $e^z$ complex differentiable, we must have
$$
\begin{align}
\lim_{n\to\infty}\frac{e^{i\pi/n}-1}{i\pi/n}
&=\left.\frac{\mathrm{d}}{\mathrm{d}z}e^z\,\right|_{\,z=0}\\
&=1
\end{align}
$$
Thus, $e^{i\pi/n}=1+\frac{i\pi}n+o\!\left(\frac1n\right)$ which places $e^{i\pi/n}$ into quadrant $1$.
Then, using trigonometry, and defining $e^{ix}=\lim\limits_{n\to\infty}\left(1+\frac{ix}n\right)^n$, we can use the method in this answer to show that
$$
e^{ix}=\cos(x)+i\sin(x)
$$
which shows that $e^{i\pi/2}=i$.