Let's suppose that $a_n$ satisfy $|a_{n+1}-a_n|<2^{-n}$ for all $n$ . How can I prove that $a_n$ is a cauchy sequence?
3 Answers
Hint: if $N\le m\le n$,
$$|a_m-a_n|\le |a_m-a_{m+1}|+|a_{m+1}-a_{m+2}|+\cdots+|a_{n-1}-a_n|< \sum_{k=m+1}^n \frac{1}{2^k}.$$
This sum is the tail of a convergent sum, and can be made arbitrarily small.

- 19,216
By triangle inequality, we have that
$$\forall n,p > 0$$
$$|u_{n+p}-u_n|\leq \sum_{k=n}^{n+p-1}|u_{k+1}-u_k|$$ $$\leq \sum_{k=n}^{n+p-1}\frac{1}{2^k}$$
$$= \frac{1}{2^n}\frac{1-2^{-p}}{1-\frac{1}{2}}$$
$$\leq\frac{1}{2^{n-1}}.$$
and since $\lim_{n\to +\infty}\frac{1}{2^{n-1}}=0$,
we can conclude that $(u_n)_n$ is a Cauchy sequence.

- 62,951
$|a_{n+1}−a_n|<2^{−n}$
$|a_{n+2}−a_n|\le|a_{n+2}-a_{n+1}|+ |a_n+1 - an| < 2^{-n}+2^{-n-1}$
assume $m>n$
$|a_m−a_n|\le \sum_\limits {i=n}^m 2^{-i}< 2^{-n+1}$
Let $N = (1-\log_2 \epsilon)$
For any $\epsilon, n,m> N \implies |a_m-a_n|<\epsilon$

- 57,877