Find the Fourier series for the function:
$$f(x) = \begin{cases} \hfill 0 \hfill & \text{$- \pi<x< 0$} \\ \hfill \pi - x \hfill & \text{ $0<x< \pi$} \\ \end{cases}$$
on $- \pi < x< \pi$. Hence show that:
$$\sum_{n=1}^\infty\frac{1-(-1)^n}{n^2} = \frac{\pi^2}{4}$$
My attempt:
Fourier series general form:
$$FS\left[f(t)\right] = \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos(nx) + \sum_{n=1}^\infty b_n \sin(nx) $$
Calculating $a_0$:
$$a_0 = \frac{1}{\pi} \int_0^\pi (\pi -x) dx = \frac{\pi}{2}$$
Calculating $a_n$:
$$a_n = \frac{1}{\pi} \int_0^\pi (\pi -x) \cos(nx) dx$$
$$=\frac{-1}{\pi} \left( \left[ \frac{x\sin(nx)}{n} \right]_0^\pi - \int_0^\pi \frac{\sin(nx)}{n}dx \right) $$
$$=\frac{1-(-1)^n}{\pi n^2}$$
Calculating $b_n$:
$$b_n = \frac{1}{\pi} \int_0^\pi (\pi -x) \sin(nx) dx$$
$$=\frac{-1}{\pi} \left( \left[ \frac{-(\pi-x)\cos(nx)}{n} \right]_0^\pi - \int_0^\pi \frac{\cos(nx)}{n}dx \right) $$
$$=\frac{1}{n}$$
giving the $FS\left[f(t)\right]$:
$$FS{[f(t)]} = \frac{\pi}{4} + \sum_{n=1}^\infty \frac{1-(-1)^n}{n^2} \cos(nx) + \sum_{n=1}^\infty \frac{\sin(nx)}{n} $$
However I am now stuck on showing:
$$\sum_{n=1}^\infty\frac{1-(-1)^n}{n^2} = \frac{\pi^2}{4}$$
Anyone have any idea? Or see where I might have gone wrong? Kind Regards,