1

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{ \dots }}}}}}$$ I don't understand how to solve that. I mean I don't know where to begin. Tell me if this infinite radical has a solution or converge to a number. Thanks.

1 Answers1

2

i hope it can help you

Theorem (Herschfeld, 1935).

The sequence $u_{n}$=$\sqrt{a_1+\sqrt{a_2+.....+\sqrt{a_{n}}}}$

converges if and only if

$\lim_{n\to∞} sup a^{2^{-n}}_{n} \lt ∞ $

The American Mathematical Monthly, Vol. 42, No. 7 (Aug-Sep 1935), 419-429.

same question answer

more information answer

W.R.P.S
  • 1,399