Find one integer solution to the following Diophantine equation: \begin{equation*} \\\forall \,x,y \in \mathbb{Z}\\ 6xy + x - y = 274 \end{equation*}
The resultat ist $x = 9$, $y = 5$ (Obtained with wolframalpha )
I need to know a method that allows me to reach such a result. How can I calculate the value of these two variables in a Diophantine equation?
For example: 6xy + x - y = 458
https://www.alpertron.com.ar/QUAD.HTM
– user25406 Dec 05 '16 at 15:48