Let $p$ be a prime, $n\in \mathbb{N}$ and $f=x^{p^n}-x-1\in \mathbb{F}_p[x]$ irreducible .
Let $a\in \overline{\mathbb{F}}_p$(=algebraic closure of $\mathbb{F}_p$) is a root of $f$.
I want to show that $\mathbb{F}_p(a)$ contains all the roots of $f$.
$$$$
If $a\in \mathbb{F}_p$ then $a^p=a$ and then
$a^{p^n}=(a^p)^{p^n-1}=a^{p^n-1}=(a^p)^{p^n-2}=a^{p^n-2}=\ldots =a$
So, $f(a)=a^{p^n}-a-1=-1\neq 0$.
Thus it must be $a\notin \mathbb{F}_p$.
Could you give me a hint how we could show that $\mathbb{F}_p(a)$ contains all the roots of $f$ ?