Let P(x) be a polynomial with integer coeeficients of the form
$P(x)=x^5+ax^4+bx^3+cx^2+dx+e$
for some integers a,b,c,d and e.
If $$\left\{ \begin{array}{l} P(1)=1\\P(2)=2\\P(3)=3\\P(4)=4\\P(5)=5 \end{array} \right.$$
what is P(6)?
Let P(x) be a polynomial with integer coeeficients of the form
$P(x)=x^5+ax^4+bx^3+cx^2+dx+e$
for some integers a,b,c,d and e.
If $$\left\{ \begin{array}{l} P(1)=1\\P(2)=2\\P(3)=3\\P(4)=4\\P(5)=5 \end{array} \right.$$
what is P(6)?
The polynomial $$P(x)-x$$ has $5$ roots, namely $1,2,3,4,5$. Since the degree of $P(x)-x$ is $5$ and the leading coefficient is $1$ , we have $$P(x)-x=(x-1)(x-2)(x-3)(x-4)(x-5)$$ This implies $$P(x)=(x-1)(x-2)(x-3)(x-4)(x-5)+x$$Just insert $6$ to get the result.