You have missed a few steps. Also I'm not sure where the number $18$ came from in $18w$.
Normally in the initial part you should continue until you get to 1. E.g.
$88=5\times15+13$ hence $13=88-5\times13\tag{1}$
$15=1\times13+2$ hence $2=15-1\times13\tag{2}$
$13=6\times2+1$ hence $1=13-6\times2\tag{3}$
Then work backwards from there:
$1=13-6\times2$ using $(3)$
$1=13-6\times(15-1\times13)=7\times13-6\times15$ using $(2)$
$1=7\times(88-5\times15)-6\times15=7\times88-41\times15$ using $(1)$
Hence $-41\times15\equiv1\pmod{88}$
Or written with a positive number: $47\times15\equiv1\pmod{88}$
So $20\times47\times15=940\times15\equiv20\pmod{88}$
$940=10\times88+60$ hence $60\times15\equiv20\pmod{88}$