Case $1$: $c\leq1$
Then $\int_0^\infty e^{ax+bx^c}~dx$
$=\int_0^\infty e^{ax}e^{bx^c}~dx$
$=\int_0^\infty\sum\limits_{n=0}^\infty\dfrac{b^nx^{cn}e^{ax}}{n!}dx$
$=\sum\limits_{n=0}^\infty\dfrac{b^n\Gamma(cn+1)}{(-a)^{cn+1}n!}$ (can be obtained from List of integrals)
$=-\dfrac{1}{a}~_1\Psi_0\left[\begin{matrix}(1,c)\\-\end{matrix};\dfrac{b}{(-a)^c}\right]$ (according to Fox Wright function)
Case $2$: $c\geq1$
Then $\int_0^\infty e^{ax+bx^c}~dx$
$=\int_0^\infty e^{ax^\frac{1}{c}}~e^{bx}~d\left(x^\frac{1}{c}\right)$
$=\dfrac{1}{c}\int_0^\infty x^{\frac{1}{c}-1}e^{ax^\frac{1}{c}}~e^{bx}~dx$
$=\int_0^\infty\sum\limits_{n=0}^\infty\dfrac{a^nx^{\frac{n+1}{c}-1}e^{bx}}{cn!}dx$
$=\sum\limits_{n=0}^\infty\dfrac{a^n\Gamma\left(\dfrac{n+1}{c}\right)}{(-b)^\frac{n+1}{c}~cn!}$ (can be obtained from List of integrals)
$=\dfrac{1}{(-b)^\frac{1}{c}c}~_1\Psi_0\left[\begin{matrix}\left(\dfrac{1}{c},\dfrac{1}{c}\right)\\-\end{matrix};\dfrac{a}{(-b)^\frac{1}{c}}\right]$ (according to Fox Wright function)