Consider definite integral of sinc function to power $p$
$I(p) = \int_0^{\infty} = \left(\frac{\sin(x)}{x}\right)^p dx$
For simplest case $p=1$, well known result is $I(1) = \pi/2$.
How to derive result for $p=2$ and $p=3$?
Consider definite integral of sinc function to power $p$
$I(p) = \int_0^{\infty} = \left(\frac{\sin(x)}{x}\right)^p dx$
For simplest case $p=1$, well known result is $I(1) = \pi/2$.
How to derive result for $p=2$ and $p=3$?
For $n=2$
$$\int_0^\infty\frac{\sin^2 x}{x^2}dx=-\int_0^\infty\left(\frac{1}{x}\right)'\sin^2 xdx=-\left.\frac{1}{x}\sin^2 x\right|_{x=0}^{x=\infty}+\int_0^\infty \frac{2\sin x\cos x}{x}\\=\int_0^\infty \frac{\sin 2x}{x}=\frac{\pi}{2}$$
For $n=3$ the same trick: integrate by parts twice, then use $\cos^2 x=1-\sin^2 x$ and formula for $\sin(3x)=3\sin x-4\sin^3 x$ to reduce it to a linear combination of $\int_0^\infty\frac{\sin ax}{x}dx$
EDIT: To add some details on each integration by parts:
$$\int_0^\infty\frac{\sin^3 x}{x^3}dx=\frac{3}{2}\int_0^\infty\frac{\sin^2 x \cos x}{x^2}dx=\frac{3}{8}\int_0^\infty\frac{3\sin(3x)-\sin x}{x}dx=\frac{3\pi}{8}$$