0

Is it possible to get a non-zero continuous function which has zero $L^{1}$ norm?

1 Answers1

1

No. If, say, $f(x)<0$, then $\lvert f(x)\rvert>\lvert f(x)\rvert/2$ in an open ball $B$, hence $$\lVert f\rVert_1\ge\int_B \lvert f(x)\rvert\,dx\ge\frac{\mathcal L( B)\lvert f(x)\rvert}{2}$$