2

What is the remainder when ${{6457}^{76}}^{57}$ is divided by $23$?


How to solve it by Euler's theorem or Chinese theorem?

Jon Garrick
  • 2,624
  • I think you'll need to add braces to clarify what you mean here, do you mean $(6457^{76})^{57}$ or $6457^{76^{57}}$? –  Dec 01 '16 at 09:06
  • @Bacon, It is like ${6457^{76^{57}}}$ this only – Jon Garrick Dec 01 '16 at 09:07
  • 1
    Ok - I see you've edited, thanks for that. –  Dec 01 '16 at 09:09
  • 2
    Well, by FLT, the remainder of $6457^{22}$ when divided by $23$ is $1$. So you just need to find the remainder of $76^{57}$ when divided by $22$, denote this remainder as $n$ and calculate the remainder of $6457^{n}$ when divided by $23$. With $n$ being smaller than $22$, this shouldn't be much of a problem. – barak manos Dec 01 '16 at 09:13
  • @barakmanos, FLT ? Sorry, tĥis thing is new to me. – Jon Garrick Dec 01 '16 at 09:19
  • 1
    FLT, Euler's theorem, same thing. FLT is a specific case of Euler's theorem for prime divisors (since if $p$ is prime then $\phi(p)=p-1$). – barak manos Dec 01 '16 at 09:19
  • @barakmanos, Can you give answer so that I can check it when I have fully understood the theorems? – Jon Garrick Dec 01 '16 at 09:20
  • No. I'm not sure how to find the remainder of $76^{57}$ when divided by $22$. You might need to use Chinese-Remainder theorem, but I can't really to you how to do that. If you solve this part, then I can give you the rest (or you can simply follow my instructions in the initial comment). – barak manos Dec 01 '16 at 09:21
  • @barakmanos You just have to use Euler's Theorem. Since $\varphi(22) = 10$, then $76^{10} \equiv 1 \pmod{22}$. Then $76^{57} = (76^{10})^5 \cdot 76^7 \equiv 1 \cdot 10^7 \pmod{22}$... You can use square-and-multiply to compute this, which gives $76^{57} \equiv 10$. – Viktor Vaughn Dec 01 '16 at 10:02
  • 1
    @SpamIAm, This method should be used iif 22 and 76 are coprimes – Jon Garrick Dec 01 '16 at 10:06
  • @Garrick Ah, you're right! I guess this is where we use the CRT: instead we should compute $76^{57}$ mod $2$ and mod $11$, then recombine the answers. – Viktor Vaughn Dec 01 '16 at 10:11
  • 1
    @Garrick Actually, I was lucky and my answer was still right. You get $76^{57} \equiv 0 \pmod{2}$ and $76^{57} \equiv 10 \pmod{11}$ which gives $76^{57} \equiv 10 \pmod{22}$. – Viktor Vaughn Dec 01 '16 at 10:26
  • @SpamIAm: Can't do that, since $gcd(76,22)\neq1$. But I proved that $76^n\bmod{22}=10$ for every odd $n$, using induction instead. – barak manos Dec 01 '16 at 12:53

4 Answers4

4

$6457\equiv-6\pmod{23}$

$\implies6457^{76^{57}}\equiv(-6)^{76^{57}}\pmod{23}\equiv6^{76^{57}}$

Now we need $76^{57}\pmod{\phi(23)}$

As $(22,76)=2,$ let us find $76^{57-1}\pmod{22/2}$

Now $76\equiv-1\pmod{11}\implies76^{56}\equiv(-1)^{56}\equiv1$

$76^{57}=76\cdot76^{56}\equiv1\cdot76\pmod{11\cdot76}\equiv76\pmod{22}\equiv10$

$\implies6^{76^{57}}\equiv6^{10}\pmod{23}$

  • Is 4th kth line and kind of formula or procedure ? – Jon Garrick Dec 01 '16 at 10:33
  • 1
    @Garrick, We can apply Euler Theorem or find $$a^m\equiv\pm1\pmod n$$ only if $(a,n)=1$,See also : http://math.stackexchange.com/questions/1952810/finding-the-last-two-digits-of-5312442/1955174#1955174 – lab bhattacharjee Dec 01 '16 at 10:44
2

Observe that:

$6457^{{76}^{57}}\bmod{23}=$

$(6457\bmod{23})^{{76}^{57}}\bmod{23}=$

$17^{{76}^{57}}\bmod{23}$


Since $\gcd(17,23)=1$, by Euler's theorem, $17^{\phi(23)}\bmod{23}=1$.

Since $23$ is prime, $\phi(23)=23-1=22$.

Therefore $17^{22}\bmod{23}=1$.


There exists a positive integer $n$ such that:

$76^{57}=$

$22n+(76^{57}\bmod{22})=$

$22n+((76\bmod{22})^{57}\bmod{22})=$

$22n+(10^{57}\bmod{22})$


Therefore:

$17^{76^{57}}\bmod{23}=$

$17^{22n+(10^{57}\bmod{22})}\bmod{23}=$

$17^{22n}\cdot17^{(10^{57}\bmod{22})}\bmod{23}=$

$(17^{22})^{n}\cdot17^{(10^{57}\bmod{22})}\bmod{23}=$

$(\color\red{17^{22}\bmod{23}})^{n}\cdot17^{(10^{57}\bmod{22})}\bmod{23}=$

$\color\red{1}^{n}\cdot17^{(10^{57}\bmod{22})}\bmod{23}=$

$17^{(10^{57}\bmod{22})}\bmod{23}$


Let's prove by induction that if $n$ is odd then $10^{n}\bmod{22}=10$:

First, show that this is true for $n=1$:

$10^{1}\bmod{22}=10$

Second, assume that this is true for $n=2k+1$:

$10^{2k+1}\bmod{22}=10$

Third, prove that this is true for $n=2k+3$:

$10^{2k+3}\bmod{22}=$

$10^{2k+2+1}\bmod{22}=$

$10^{2+2k+1}\bmod{22}=$

$10^2(10^{2k+1})\bmod{22}=$

$10^2(\color\red{10^{2k+1}\bmod{22}})\bmod{22}=$

$10^2(\color\red{10})\bmod{22}=$

$1000\bmod{22}=$

$10$

Therefore, since $57$ is odd, $10^{57}\bmod{22}=10$.


From all of the above, we can conclude:

$6457^{76^{57}}\bmod{23}=$

$17^{76^{57}}\bmod{23}=$

$17^{(76^{57}\bmod{22})}\bmod{23}=$

$17^{(10^{57}\bmod{22})}\bmod{23}=$

$17^{10}\bmod{23}$


So we only need to calculate $17^{10}\bmod{23}$, which is pretty easy:

$17^{2}\bmod{23}=13\implies$

$17^{4}\bmod{23}=13^{2}\bmod{23}=8\implies$

$17^{8}\bmod{23}=8^{2}\bmod{23}=18$


Therefore:

$17^{10}\bmod{23}=$

$17^{2+8}\bmod{23}=$

$(17^{2}\cdot17^{8})\bmod{23}=$

$((17^{2}\bmod{23})\cdot(17^{8}\bmod{23}))\bmod{23}=$

$(13\cdot18)\bmod{23}=$

$4$

barak manos
  • 43,109
  • 2
    The result $6$ is incorrect, The correct result is $4\pmod{23}\ \ $ – Bill Dubuque Dec 16 '16 at 18:42
  • @BillDubuque: Ooops, I used $8$ instead of $13$ in that one-before-last line. I will fix this right away. Thanks for the correction (and for reviewing my "exponentiation" answers in general :) ). – barak manos Dec 17 '16 at 08:21
1

$\ \ \ ca\bmod cn\,=\, c\,(a\bmod n)\ $ as we explained here, hence

$ 76^{\large 57}\!\bmod 22\, =\, 2\,(38\cdot 76^{\large 56}\bmod 11)\, =\, 2\,(5(-1)^{\large 56}) = 10\ $ so $\ \color{#c00}{76^{\large 57}\! =10\! +\! 22k}$

${\rm mod}\,\ 23\!:\,\ 6457^{\large{ 76^{\Large 57}}}\!\!\! \equiv17^{\large \color{#c00}{76^{\Large 57}}}\!\!\!\equiv17^{\large\color{#c00}{ 10+22k}}\equiv 17^{\large 10}{\underbrace{(17^{\large 22})^{\large k}\equiv 1^{\large k}}_{\rm Fermat}}17^{\large 10}\equiv \color{#0a0}{17^{{\large 10}}}\ $

Bill Dubuque
  • 272,048
  • $$ {\rm Reducing}\quad 17\equiv -11^{\large 2}\ \Rightarrow\ \color{#0a0}{17^{\large 10}}!\equiv \underbrace{11^{\large 20}!\equiv \dfrac{1}{11^{\large 2}}}_{\rm Fermat}\equiv \dfrac{1}6\equiv\dfrac{24}6\equiv,\color{#0a0}4 $$ – Bill Dubuque Dec 16 '16 at 19:33
0

By Euler's Theorem, $\varphi(23)=22$ and applying Fermat's Theorem $1\equiv 6457^{\varphi(23)} \pmod{23}$

$10 \equiv 76 \pmod{\varphi{(23)}}$

$7 \equiv 57 \pmod{\varphi({\varphi{(23)}})}$

$10 \equiv 10^{7} \pmod{\varphi{(23)}}$

So we know that $6457^{76^{57}}\equiv 6457^{10} \pmod{23}$

$17\equiv 6457 \pmod{23}$

Thus $4\equiv 6457^{76^{57}} \pmod{23}\equiv 6457^{10} \pmod{23} \equiv 17^{10} \pmod{23}$

kub0x
  • 2,117
  • 1
  • 15
  • 25