$$\begin{align}
S&=\sum_{n=0}^\infty\frac{1}{((2n+1)^2-4)^2}=\sum_{n=0}^\infty\frac{1}{(4n^2+4n-3)^2}=\sum_{n=0}^\infty\frac{1}{((2n-1)(2n+3))^2}\\
&=\frac{1}{4}\sum_{n=0}^\infty\frac{2n+3-(2n-1)}{((2n-1)(2n+3))^2}=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)^2(2n+3)}-\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)^2}\\
&=\frac{1}{16}\sum_{n=0}^\infty\frac{1}{(2n-1)^2}-\frac{2}{16}\sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)}+\frac{1}{16}\sum_{n=0}^\infty\frac{1}{(2n+3)^2}
\end{align}$$
Using this we see
$$\begin{align}
&\sum_{n=0}^\infty\frac{1}{(2n-1)^2}=\frac{3}{4}\zeta(2)+1\\
&\sum_{n=0}^\infty\frac{1}{(2n+3)^2}=\frac{3}{4}\zeta(2)-1
\end{align}$$
And we can use telescoping on the middle-term as follows
$$\begin{align}
\sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)}&=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)}-\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n+3)}\\
&=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)}-\frac{1}{4}\sum_{n=2}^\infty\frac{1}{(2n-1)}\\
&=\frac{1}{4}(-1+1)=0
\end{align}$$
And so
$$S=\frac{1}{16}\times\frac{3}{2}\zeta(2)=\frac{\pi^2}{64}$$