3

For the series $\displaystyle\sum_{n=0}^{\infty}\frac{1}{((2n+1)^2-4)^2}$ wolframalpha gives answer $\displaystyle\frac{\pi^2}{64}$, but another site gives $\displaystyle\frac{\pi^2}{64}-\frac{1}{12}$: http://www.emathhelp.net/calculators/calculus-2/series-calculator/?f=1%2F%28%282n%2B1%29%5E2-4%29%5E2&var=&a=0&b=inf.

What is the correct answer?

eMathHelp
  • 2,409
  • 2
    You are summing a sequence of non-negative numbers, the first term $\frac19$ is already bigger then $\frac{\pi^2}{64} - \frac{1}{12}$. So the second answer is definitely wrong. I'm doing the sum by hand, I get same answer as WA. – achille hui Dec 01 '16 at 07:40
  • Out of curiosity @achille hui, "doing it by hand" are you just manually summing terms until they become too small to affect the overall sum? Or how does one calculate it by hand? – Jonathan Dec 01 '16 at 07:50
  • @plsmakemedomath By hand, I mean transform the series to a sum between $\sum_{n=1}^\infty \frac{1}{(2n+1)^2}$ and another telescoping series. – achille hui Dec 01 '16 at 07:57
  • sums of this type are regulary calculated here on MSE. Just sniff araound a bir... – tired Dec 01 '16 at 08:01
  • You can use the fact that $\zeta(2) = \frac{\pi^2}{6}$ – Max Payne Dec 01 '16 at 08:03

1 Answers1

3

$$\begin{align} S&=\sum_{n=0}^\infty\frac{1}{((2n+1)^2-4)^2}=\sum_{n=0}^\infty\frac{1}{(4n^2+4n-3)^2}=\sum_{n=0}^\infty\frac{1}{((2n-1)(2n+3))^2}\\ &=\frac{1}{4}\sum_{n=0}^\infty\frac{2n+3-(2n-1)}{((2n-1)(2n+3))^2}=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)^2(2n+3)}-\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)^2}\\ &=\frac{1}{16}\sum_{n=0}^\infty\frac{1}{(2n-1)^2}-\frac{2}{16}\sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)}+\frac{1}{16}\sum_{n=0}^\infty\frac{1}{(2n+3)^2} \end{align}$$ Using this we see $$\begin{align} &\sum_{n=0}^\infty\frac{1}{(2n-1)^2}=\frac{3}{4}\zeta(2)+1\\ &\sum_{n=0}^\infty\frac{1}{(2n+3)^2}=\frac{3}{4}\zeta(2)-1 \end{align}$$ And we can use telescoping on the middle-term as follows $$\begin{align} \sum_{n=0}^\infty\frac{1}{(2n-1)(2n+3)}&=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)}-\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n+3)}\\ &=\frac{1}{4}\sum_{n=0}^\infty\frac{1}{(2n-1)}-\frac{1}{4}\sum_{n=2}^\infty\frac{1}{(2n-1)}\\ &=\frac{1}{4}(-1+1)=0 \end{align}$$ And so $$S=\frac{1}{16}\times\frac{3}{2}\zeta(2)=\frac{\pi^2}{64}$$