I know that the series b. converges as $\sum \frac{1}{n^p}$ converges for $p>1$, So a. also converges. I want to know the sum.
a.$1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+.....$
<p>$b.1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....$</p>
I know that the series b. converges as $\sum \frac{1}{n^p}$ converges for $p>1$, So a. also converges. I want to know the sum.
a.$1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+.....$
<p>$b.1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....$</p>
If you know $\displaystyle \sum_1^\infty \frac1{n^2} = \frac{\pi^2}6$, then this is easy, as the even series is just $\displaystyle \sum_1^\infty \frac1{4n^2} = \frac{\pi^2}{24}$.
I leave the odd series for you to separate out.
The Riemann zeta function is defined as $$\zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^s}.$$ The value of $\zeta(2)$ is known to be $\frac{\pi^2}{6}$. Thus $$\sum_{n=0}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}.$$ The series in a. in your post can be written as $$\sum_{n=1}^{\infty}\frac{1}{n^2} - \sum_{n=1}^{\infty}\frac{1}{(2n)^2} = \frac{3}{4}\sum_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{8}.$$
Hint
$$1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\cdots-(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\cdots)$$ Now $$\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\cdots=\frac{1}{4}(1+\frac{1}{4}+\frac{1}{9}+\cdots)$$