Prove that if $x,y \in R$, and $1 \leq p < \infty$ then $|x+y|^p \leq 2^p(|x|^p+|y|^p )$
what I'm thinking is
$|x+y|\leq |x|^p+|y|\le 2\cdot\max\{|x|,|y|\}$
Without loss of generality , let $\max\{|x|, |y|\}=|x|$
hence and $|x+y|\leq 2|x| \Rightarrow |x+y|^p \le (2|x|)^p = 2^p|x|^p $
$|x+y|^p \le 2^p|x|^p $ and since $|y| \ge 0 $, we have
$ |x+y|^p \le 2^p(|x|^p+|y|^p )$
Is there any idea I could have used here?