You can find the sum using only basic calculus -- without invoking termwise integration or differentiation of infinite Taylor series or Abel's theorem.
Begin with the finite geometric sum
$$\sum_{k=0}^{n-1} (-x)^k = \frac{1 - (-x)^n}{1+x}.$$
Rearranging, we have
$$\sum_{k=0}^{n-1} (-1)^kx^k - \frac{1}{1+x}= \frac{(-1)^nx^n}{1+x}.$$
Integrate both sides over $[0,1]$, noting that termwise integration of the finite sum requires no special justification,
$$\sum_{k=0}^{n-1} (-1)^k\int_0^1x^k \, dx - \int_0^1\frac{1}{1+x} \, dx= \int_0^1\frac{(-1)^nx^n}{1+x} \, dx.$$
Hence,
$$\sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} - \ln 2= (-1)^n\int_0^1\frac{x^n}{1+x} \, dx,$$
and
$$0 \leqslant \left|\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} - \ln 2 \right| = \left|\int_0^1\frac{x^n}{1+x} \, dx\right| \\ \leqslant \int_0^1\left|\frac{x^n}{1+x}\right| \, dx \leqslant \int_0^1 x^n \, dx = \frac{1}{n+1}.$$
By the squeeze theorem, it follows that
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln 2.$$