0

How can I prove the following equality; $$\sum_{n=1}^{\infty}\frac{1}{n2^n}=\ln 2\,.$$

David
  • 111

1 Answers1

1

Notice that

$$\frac1{1-r}=\sum_{n=0}^\infty r^n$$

Integrate both sides with respect to $r$ from $0$ to $x$ to get that

$$-\ln(1-x)=\sum_{n=0}^\infty\frac{x^{n+1}}{n+1}=\sum_{n=1}^\infty\frac{x^n}n$$

Now proceed to use $x=1/2$.