This is the special case $\rm\ m = 1\ $ in a proof I presented here. See that thread for more on the universal viewpoint that explains the simplicity of this proof. For convenience, here is the proof.
LEMMA $\rm\: \ \lfloor x/(mn)\rfloor\ =\ \lfloor{\lfloor x/m\rfloor}/n\rfloor\ \ $
for $\rm\ \ n > 0$
Proof $\rm\quad\quad\quad\quad\quad\ \ \ k\ \le \lfloor{\lfloor x/m\rfloor}/n\rfloor$
$\rm\quad\quad\quad\quad\quad\iff\quad\ \ k\ \le\ \:{\lfloor x/m\rfloor}/n$
$\rm\quad\quad\quad\quad\quad\iff\ \ nk\ \le\ \ \lfloor x/m\rfloor$
$\rm\quad\quad\quad\quad\quad\iff\ \ nk\ \le\:\ \ \ x/m$
$\rm\quad\quad\quad\quad\quad\iff\ \ \ \ k\ \le\:\ \ \ x/(mn)$
$\rm\quad\quad\quad\quad\quad\iff\ \ \ \ k\ \le\ \ \lfloor x/(mn)\rfloor $
Compare the above trivial proof to more traditional proofs, e.g. the special case $\rm\ m = 1\ $ here.
x = -1.67
then I would rewrite it as:-2 + 0.33
? – roxrook Feb 04 '11 at 06:41