2

The derivative at any point $(u,v)\in V\times W$ is the linear map defined by $(x,y)\longmapsto B(u,y)+B(x,v)$ . I am trying to prove this using the limit definition. My limit ended up looking like ${{\displaystyle {\lim_{(h_{1},h_{2})\to0}}}}\frac{|B(h_{1},h_{2})|}{|(h_{1},h_{2})|}$ and I am trying to prove that it is $0$ , but I don't now how.

Eigenfield
  • 1,532

1 Answers1

1

For $(u,v) \in U \times V$ you have $$\begin{aligned} \Vert B(x+u,y+v)-B(x,y) -(B(u,y)+B(x,v)) \Vert &= \Vert B(u,v) \Vert\\ &\le \Vert B \Vert \Vert u \Vert \Vert v \Vert\\ &\le \frac{\Vert B \Vert}{2} (\Vert u \Vert + \Vert v \Vert)^2 \end{aligned}$$ Hence $$\lim\limits_{(u,v) \to (0,0)} \frac{\Vert B(x+u,y+v)-B(x,y) -(B(u,y)+B(x,v)) \Vert}{\Vert (u,v) \Vert} = 0$$

as $\Vert u \Vert + \Vert v \Vert$ is a norm on $U \times V$, and on finite dimensional spaces all norms are equivalent.

This proves that $(u,v) \mapsto B(u,y)+B(x,v)$ is the derivative of $B$ at $(x,y)$.