If $X$ is a random variable then is it true that,
$$\liminf_{p \rightarrow 0}\ \lVert X \rVert_ p = \exp [ \mathbb{E} [ \log \lvert X \rvert]]\quad ?$$
I am unable to see this to be true even for finite random variables. Like if $X$ takes two values say $x_1$ and $x_2$ with probabilities $p_1 \in [0,1]$ and $1-p_1$ respectively then the above claim is saying that,
$\liminf _{p \rightarrow 0} (p_1 x_1 ^p + (1-p_1)x_2^p )^\frac{1}{p} = x_1^{p_1} x_2^{1-p_1} $
I don't know why the above must be true!