I'am trying to prove that $$\int_{-1}^{+1} (1-x^2)^n\:\mathrm{d}x = \frac{2^{2n+1}(n!)^2}{(2n+1)!}$$
Here what I have done so far. We know that: \begin{equation} \sin^{2}x + \cos^{2}x = 1 \end{equation} Let $x = \sin\alpha$ so $\mathrm{d}x = \cos\alpha\:\mathrm{d}\alpha$
\begin{equation} x^{2} = \sin^{2}\alpha \end{equation}
\begin{equation} \cos^{2}x = 1 -\sin^{2}x \end{equation}
We have $x = 1 \Rightarrow \alpha = \frac{\pi}{2}$ and $x = -1 \Rightarrow \alpha = - \frac{\pi}{2}$, so we replace the original integral by:
$$\int_{-1}^{1} (x-1^2)^n\:\mathrm{d}x = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n+1}\alpha\:\mathrm{d}\alpha = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos^{2n}\alpha) \cos\alpha\:\mathrm{d}\alpha$$
Now integrating by parts, $$u = \cos^{2n}\alpha \quad \Rightarrow\:\mathrm{d}v = \cos\alpha\:\mathrm{d}\alpha \\ \mathrm{d}u = -2n\cos^{2n-1}\alpha\sin\alpha\:\mathrm{d}\alpha \quad \Rightarrow v = \sin\alpha \\ \int udv = uv - \int vdu$$
Then, \begin{align}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos^{2n}\alpha) \cos\alpha\:\mathrm{d}\alpha &= \underbrace{\cos^{2n}\alpha \sin\alpha \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}}_{\text{= 0}} + 2n\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n-1}\alpha \sin^{2} \alpha\:\mathrm{d}\alpha \\[10pt] &= 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n-1}\alpha (1-\cos^2\alpha)\:\mathrm{d}\alpha \\ &= 2n\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n-1}\alpha\:\mathrm{d}\alpha - 2n\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n+1}\alpha\:\mathrm{d}\alpha \end{align}
Now we see that $$(2n+1)\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n+1}\alpha = 2n\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} cos^{2n-1}\alpha\:\mathrm{d}\alpha$$
I am stuck here, it's almost the same integral as the original one. Any suggestions or corrections will be very welcome. Thanks.