I need help with the following proofs:
Given a continued fraction $[a_0,a_1,...,a_N]$ ($a_i$ for all $i$ is a natural number).
We define as well:$p_{-1}=1$ ,$q_{-1}=0$ ,$p_0=a_0$ ,$q_0=1$ , and by recursion:
$p_n=a_np_{n-1}+p_{n-2}$ , $q_n=a_nq_{n-1}+q_{n-2}$
Prove:
1.$p_nq_{n-1}-p_{n-1}q_n=(-1)^{n-1}$
2.$p_nq_{n-2}-p_{n-2}q_n=(-1)^na_n$
I know that it should be done with induction but I really can't solve it..