Evaluation of $$\int^{1}_{0}\frac{\ln^2(1+x)}{x}dx$$
$\bf{My\; Try::}$ Let $$I = \int^{1}_{0}\frac{\ln^2(1+x)}{x}dx = \int^{1}_{0}\ln^2(1+x)\cdot\frac{1}{x}dx$$
Using By parts, We get
$$I = \left[\ln^2(1+x)\cdot \ln(x)\right]^{1}_{0}-2\int^{1}_{0}\frac{\ln(1+x)\cdot \ln x}{1+x}dx$$
So we get $$I = -2\int^{1}_{0}\frac{\ln(1+x)\cdot \ln x}{1+x}dx$$
Now how can i solve above Integral , Help required, Thanks