I try to give an answer which is independent on the various definitions of $\limsup a_n$, basing on the two following elementary lemmas.
Lemma 1. Let $\langle a_n \rangle = \{ a_n : n\in\mathbb{N}\}$ be a (not necessarily strictly) monotonically decreasing succession of extended real numbers (i.e. $a_n\in\overline{\mathbb{R}}= \mathbb{R}\cup\{+\infty, -\infty\}$ for each $n\in\mathbb{N}$). Then
$$
\lim_{n\to\infty} a_n = \inf\langle a_n \rangle
$$
Proof. The case $\inf\langle a_n \rangle=\infty$ is trivial. If $\inf\langle a_n \rangle\in\mathbb{R}\cup\{-\infty\}$, from the definition of infimum of a set of real numbers we have that, for any given real number $\varepsilon > 0$, there exists a natural number $m$
$$
\begin{cases}
a_m < -\varepsilon & \text{if } \inf\langle a_n \rangle =-\infty,\\
0 \leq a_m - \inf\langle a_n \rangle < \varepsilon & \text{if } \inf\langle a_n \rangle \in \mathbb{R}.
\end{cases}
$$
But since $\langle a_n \rangle$ is monotonically decreasing, for every natural $n\geq m$
$$
\begin{cases}
a_n < -\varepsilon & \text{if } \inf\langle a_n \rangle =-\infty,\\
0 \leq a_n - \inf\langle a_n \rangle < \varepsilon & \text{if } \inf\langle a_n \rangle \in \mathbb{R}.
\end{cases} \Longleftrightarrow \lim_{n\in\mathbb{N}} a_n = \inf\langle a_n \rangle.\quad\blacksquare
$$
Lemma 2. Let $\langle a_n \rangle = \{ a_n : n\in\mathbb{N}\}$ be a (not necessarily strictly) monotonically decreasing succession of extended real numbers, and let $\langle a_n \rangle_{n\geq{N}} = \{ a_n : n\geq N, n\in\mathbb{N}\}$ a subsequence obtained from $\langle a_n \rangle$ by omitting its first $N$ terms. Then
$$
\inf\langle a_n \rangle = \inf\langle a_n \rangle_{n\geq{N}}
$$
Proof. It is a trivial consequence of the definition of infimum of a set of real numbers and of monotone sequence of real numbers. $\blacksquare$
Put $A_n = \sup \{ a_m : m\geq n\}$ for each $n\in\mathbb{N}$: now $\langle A_n \rangle$ is a monotonically decreasing sequence of extended real numbers, as noted by user0347284: therefore, by applying to it the two preceding lemmas one gets the sought for proof:
$$
\limsup_{n \to \infty} a_n = \inf\langle A_n \rangle = \inf\langle A_n \rangle_{n\geq{N}} = \lim_{N \to \infty} A_N = \lim_{N \to \infty} \sup \{ a_n : n\geq N\}
$$