The lemma below implies that $\,1,\sqrt2,\sqrt3,\sqrt6\:$ are linearly independendent over $\,\Bbb Q.$
Lemma $\rm\ \ [K(\sqrt{a},\sqrt{b}) : K] = 4\ $ if $\rm\ \sqrt{a},\ \sqrt{b},\ \sqrt{a\:b}\, $ are all $\rm\,\not\in K,\:$ and $\rm\: 2 \ne 0\:$ in $\rm\,K.$
Proof $\ \ $ Let $\rm\ L = K(\sqrt{b})\:.\:$ Then $\rm\: [L:K] = 2\:$ via $\rm\:\sqrt{b} \not\in K,\:$ thus it suffices to show $\rm\: [L(\sqrt{a}):L] = 2\:.\:$ It fails only if $\rm\:\sqrt{a} \in L = K(\sqrt{b})\ $ and then $\rm\ \sqrt{a}\ =\ r + s\ \sqrt{b}\ $ for $\rm\ r,s\in K.\:$ But that's impossible, since squaring yields $\rm(1):\ \ a\ =\ r^2 + b\ s^2 + 2\:r\:s\ \sqrt{b}\:,\: $ contra, hypotheses, as follows
$\rm\quad\quad\quad\quad\quad\quad\quad\quad rs \ne 0\ \ \Rightarrow\ \ \sqrt{b}\ \in\ K\ \ $ by solving $(1)$ for $\rm\sqrt{b}\:,\:$ using $\rm\:2 \ne 0$
$\rm\quad\quad\quad\quad\quad\quad\quad\quad\ s = 0\ \ \Rightarrow\ \ \ \sqrt{a}\ \in\ K\ \ $ via $\rm\ \sqrt{a}\ =\ r \in K$
$\rm\quad\quad\quad\quad\quad\quad\quad\quad\ r = 0\ \ \Rightarrow\ \ \sqrt{a\:b}\in K\ \ $ via $\rm\ \sqrt{a}\ =\ s\ \sqrt{b}\:,\: \ $times $\rm\:\sqrt{b}\quad$ QED