Note that
\begin{equation*}
\liminf a_n = -\limsup -a_n.
\end{equation*}
Then use the fact that
\begin{equation*}
\limsup c_n +d_n \leq \limsup c_n +\limsup d_n
\end{equation*}
Specifically, let $c_n=b_n+a_n$ and $d_n=-a_n$. Then
\begin{equation*}
\limsup b_n
=
\limsup (b_n + a_n -a_n)
\leq
\limsup (b_n+a_n) + \limsup -a_n.
\end{equation*}
Rearranging terms, we have
\begin{equation*}
\limsup b_n - \limsup -a_n
\leq
\limsup (b_n+a_n)
\end{equation*}
or
\begin{equation*}
\limsup b_n + \liminf a_n
\leq
\limsup (b_n+a_n).
\end{equation*}
proof of claim:
Let $\{c_{n_k}+d_{n_k}\}$ be a subsequence converging to
$\limsup_n c_n+d_n$.
Now,
$\limsup_k c_{n_k} \leq \limsup_n c_n $ and $\limsup_k d_{n_k} \leq \limsup_n d_n $ since $\{n_k\} \subset \mathbb{N}$.