Problem statement
Resolve the eigensystem for
$$
\mathbf{A} =
%
\left[
\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3 \\
\end{array}
\right]
$$
Eigenvalues
The matrix to manipulate is
$$
\mathbf{A} - \lambda \mathbf{I}_{3} =
\left[
\begin{array}{ccc}
\boxed{3-\lambda} & \boxed{1} & \boxed{1} \\
1 & 3-\lambda & 1 \\
1 & 1 & 3-\lambda \\
\end{array}
\right]
$$
Define characteristic equation
$$
p(\lambda) = \det \left( \mathbf{A} - \lambda \mathbf{I}_{3} \right)
$$
Construct determinant from minors
$$
%
\begin{align}
%
\det \left( \mathbf{A} - \lambda \mathbf{I}_{3} \right)
%
&= \boxed{\left( 1 - \lambda \right)}
\left|
\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda \\
\end{array}
\right|
%
- \boxed{1}
\left|
\begin{array}{cc}
1 & 1 \\
1 & 3-\lambda \\
\end{array}
\right|
%
+ \boxed{1}
\left|
\begin{array}{cc}
1 & 3-\lambda \\
1 & 1 \\
\end{array}
\right| \\[3pt]
%
&= -\lambda ^3 + 9 \lambda ^2 - 24 \lambda + 20 \\[2pt]
%
&= -(\lambda -5) (\lambda -2)^2\\
%
\end{align}
%
$$
The roots $p\left( \lambda \right) = 0$ are the eigenvalues.
The eigenvalue spectrum is
$$
\color{blue}{\lambda \left( \mathbf{A} \right) = \left\{ 5, 2, 2 \right\}}
$$
Eigenvectors
Solve $$ \left( \mathbf{A} -\lambda_{k} \mathbf{I}_{3} \right) u = 0$$
$ \lambda_{1} = 5$:
$$
%
\begin{align}
%
\left[
\begin{array}{c}
-2u_{1} + u_{2} + u_{3} \\
u_{1} - 2 u_{2} + u_{3} \\
u_{1} + u_{2} - 2 u_{3} \\
\end{array}
\right]
%
=
%
\left[
\begin{array}{c}
0 \\
0 \\
0 \\
\end{array}
\right]
%
\qquad \Rightarrow \qquad
%
\color{blue}{v_{1} =
\left[
\begin{array}{c}
1 \\
1 \\
1 \\
\end{array}
\right]}
%
\end{align}
%
$$
$ \lambda_{2} = 2$: Repeated root
$$
\mathbf{A} - 2 \mathbf{I}_{3} =
\left[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\right]
$$
Find two null space vectors for this matrix. Manipulate the real variables and look for solutions of the form
$$
\left[
\begin{array}{c}
\alpha \\
1 \\
0 \\
\end{array}
\right], \quad
\left[
\begin{array}{c}
\beta \\
0 \\
1 \\
\end{array}
\right]
$$
The eigenvectors are
$$
\color{blue}{ v_{2} =
\left[
\begin{array}{r}
-1 \\
1 \\
0 \\
\end{array}
\right],
\quad
v_{3} =
\left[
\begin{array}{r}
-1 \\
0 \\
1 \\
\end{array}
\right]}
$$