Possible Duplicate:
Determinant of a specially structured matrix
Determining eigenvalues, eigenvectors of $A\in \mathbb{R}^{n\times n}(n\geq 2)$.
I have the following matrix $$ A = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix} $$ and I need to calculate $det(A)$. How could I calculate this determinant and which are the eigenvalues ?
Thanks :)