4

This identity stems from:$$\tan\alpha + \tan\beta + \tan\gamma = \tan\alpha \tan\beta \tan\gamma$$
(for $\alpha + \beta + \gamma = \pi$) which can easily be proven using the $\tan(\alpha + \beta)$ identity.

However, I have been unable to prove $$\sin\alpha \cos\alpha + \sin\beta \cos\beta + \sin\gamma \cos\gamma = 2\sin\alpha \sin\beta \sin\gamma,$$ where $\alpha + \beta + \gamma = \pi$.

EDIT: I proved it.
From $\alpha + \beta + \gamma = \pi$ we have$\alpha = \pi - (\beta + \gamma)$
This implies $$ \sin\alpha = \sin(\beta +\gamma) \quad \text{and }\quad \cos\alpha = -\cos(\beta +\gamma).$$
Then, we have $$\begin{align} \sin\alpha \cos\alpha &=-\sin(\beta +\gamma)\cos(\beta + \gamma)\\ &= -(\sin\beta \cos\gamma + \sin\gamma \cos\beta)(\cos\beta \cos\gamma - \sin\beta \sin\gamma)\\ &= -(\sin\beta \cos\beta \cos^2\gamma \ - \sin\gamma \cos\gamma \sin^2\beta + \sin\gamma \cos\gamma \cos^2\beta - \sin\beta \cos\beta \sin^2\gamma)\\ &= -[\sin\beta \cos\beta \ (\cos^2\gamma - \sin^2\gamma) + \sin\gamma \cos\gamma \ (\cos^2\beta - \sin^2\beta)]\\ &= \sin\beta \cos\beta \ (\sin^2\gamma - \cos^2\gamma) + \sin\gamma \cos\gamma \ (\sin^2\beta\ - \cos^2\beta ) \end{align}$$ Substituting this in $\sin\alpha \cos\alpha + \sin\beta \cos\beta + \sin\gamma \cos\gamma$ we get $$\begin{align} \sin\beta \cos\beta &(\sin^2\gamma - \cos^2\gamma) + \sin\beta \ cos\beta + \sin\gamma \cos\gamma \ (\sin^2\beta\ - cos^2\beta) + \sin\gamma \cos\gamma \\ &= \sin\beta \cos\beta \ (\sin^2\gamma +1 - \cos^2\gamma) + \sin\gamma \cos\gamma \ (\sin^2\beta +1 - \cos^2\beta)\\ &= \sin\beta \cos\beta \ (\sin^2\gamma + \sin^2\gamma) + \sin\gamma \cos\gamma \ (\sin^2\beta +\sin^2\beta)\\ &= \sin\beta \cos\beta \ (2\sin^2\gamma) + \sin\gamma \cos\gamma \ (2\sin^2\beta)\\ &= 2\sin\beta \sin\gamma \ (\sin\gamma \cos\beta + \sin\beta \cos\gamma)\\ &= 2\sin\beta \sin\gamma \sin(\beta + \gamma)\\ &= 2\sin\beta \sin\gamma \sin\alpha\\ &= 2\sin\alpha \sin\beta \sin\gamma. \end{align}$$

Robert Z
  • 145,942

0 Answers0